Journal of Magnetic Resonandd6,157-164 (2000)

doi:10.1006/jmre.2000.2144, available online at http://www.idealibrary.col

HDE h;l®

Torus Factor—The Relationship between Radiofrequency Field and
Radial Position in Toroid Cavity Probes

Klaus Woelk

Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany

E-mail: woelk@thch.uni-bonn.de

Received February 9, 2000; revised June 13, 2000

Toroid detectors are resonators for high-pressure in situ NMR
spectroscopy or one-dimensional rotating-frame imaging. One of
their unique qualities is a mathematically well-defined nonuniform
radiofrequency field confined to the inside of the detector. A single
parameter (i.e., the torus factor) is sufficient to describe the rela-
tionship between this radiofrequency field and the radial distance
from the center axis of the torus. Because accurate determination
of the torus factor is essential to optimize toroid cavity NMR
experiments or conduct toroid cavity imaging, a fast numerical
algorithm for accurate, precise, and convenient determination of
torus factors from pulse width-dependent signal intensities is in-
troduced. In addition, the new algorithm provides for 99% confi-
dence intervals around the refined torus factors. A computer
program in which the optimization progress is visualized during
the torus factor refinement is presented. Upon completion of the
program, the best-fit simulated data and the residuals between best
fit and experimental data are provided. © 2000 Academic Press

Key Words: torus factor; toroid cavity detector; rotating-frame
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INTRODUCTION

whereA is the torus factor, i.e., the proportionality betwe#n
andr *. The torus factor depends primarily on the power leve
of the transmitter amplifier and the qualit§), of the probe
circuitry. From Eq. [1], it is seen that B, field gradient of

dB(r) A
Y

Gun) = —g—= 1 2]

occurs in TCDs. In the vicinity of the central conductGr, is
very strong. Here, standard high-resolution NMR equipmen
(e.g., 100-W H-band power amplifier) is usually sufficient to
generate gradients of more than 5 mT mMnBGO0 G cm™).
Accordingly, G, is well suited for one-dimensional, radial RFI
(rotatingframeimaging) @) or RFM (rotatingframemicros-
copy) @). Close to the central conductor, toroid-cavity RFM
can resolve structures on the micrometer scale in materials tt
range from mobile fluids to rigid polymers. Since differences
in nutation frequencies (rather than differences in Larmo
frequencies) are exploited to discriminate between distance

Toroid cavity probes are uniquely designed NMR probesemical-shift information is automatically retained in RFI
that facilitate coaxial resonators, i.e., cylindrical TCB®did  experiments.

cavity detectors, Fig. 1) as NMR detectors rather than conven-gecause of the nonuniform and radially depend@ngra-
tional coil setups (e.g., solenoid or Helmholtz saddle coilsgient in TCDs, accurate one-dimensional imaging is conducte
The radiofrequency fieldg, field) of a TCD is confined to the only if the torus factor is known accurately and precisely.
inside of the detectorlf; therefore, it can be mounted close tq||-determined torus factors (i.e., determined larger or smalle
electrically conducting materials without a significant loss ahan the true torus factor) lead to images in which structure
inductance. Consequently, TCDs are predestined for the usgyfpear larger or smaller than they really are. In addition, th
metal pressure vessels and have been utilized extensivelyrﬁaged structures appear shifted on the distance axis.
autoclave probes for high-pressure and high-temperatisies | toroid-cavity MAGROFI (nagnetizationgrating rotating-
NMR studies 2). frameimaging), a recently developd} gradient NMR tech-

An additional, distinctive quallty of TCDs is their nonuni'nique to measure molecular dlﬁUSKE], @1 the accuracy of the
form and mathematically well-defined radiofrequency fielgbrus factor limits the accuracy to which a diffusion coefficient
gradient. TheB, field is strongest near the central conductgg determined. In this new technique, a single preparation puls
(Fig. 1) and drops off as the radial distancencreases) (P1) generates a nonuniform, radially dependemtagnetiza-
tion grating. During a subsequent evolution timehe grating
amplitudeM,(r) decays exponentially depending on the in-
verse of the radius to a power of 8)(

A
By(r) =, [
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torus factor is calculated to a maximum accuracy has bee
developed. In addition to the calculation of the most likely
torus factor, the new algorithm returns the 99% confidenc
interval of determination.

Any sample that is placed inside the TCD decreased (i
some extent and also influences the valuéofThus, a pre-
viously determined torus factor may no longer be valid if the
TCD is loaded with a different sample. Consequently, the
proportionality between radial distance aBd field in TCDs
should always be determined directly from the sample unde
investigation. The numerical procedure introduced here serve
as a fast and convenient way to conduct this determinatio
prior to each individual TCD experiment. However, the pro-
cedure is valid only for reasonably homogeneous samples, al
may not be accurate once a more complicated, nonhomog
neous sample is loaded, e.g., for imaging studies. In this cas
h the scaling of the radial distance axis must be conducted frol
known structural details of the image, such as the descent
the intensity to zero at the inner or outer sample radius of th
TCD.

SN\~

THEORY

The torus factorA, is a dependent variable in the mathe-
matical description of the RFI experiment. Accordingly, it is
determined from the best fit of the mathematical description t
experimental RFI data. Experimental RFI data (i.e., pulse
width-dependent signal intensities) are obtained either fror
conventional RFI experiments3)( or from the time-saving
RIPT method (apid imaging pulse train) (7—9). After the
experiment, the signal intensities are typically processed by
real Fourier transformation revealing magnetization as a func
1 tion of nutation frequencyy,. The nutation-frequency axis is
scaled byG, to present data on a distance axis4). If the B,
gradient coil or resonator is also used as the receiving coi

FIG. 1. Schematic drawing of a toroid cavity detector (TCD) and thé=ourier-transformed intensities must be scaled appropriately |
enclosed_sample_ volume. The sample v_qume is characterized by the inner apdhibit spin-concentration data as a function of distance. Fc
outer radial confines (,, andr ..., respectively) and by the sample heigh}.( example, they must be divided W in the case of TCD

experiments 1).
Pulse-width-dependent signal intensities have been terme
_ Dy’A%ter pseudo-FID(8) or driven FID (9). In RFI experiments, how-
Ma(r) = exp =3 : [l ever, the attenuation of signal i ities with i [
, gnal intensities with increasing puls
width originates almost exclusively from the interference of
where D is the diffusion coefficient;y is the magnetogyric magnetizations of different nutation frequencigs9), and the
ratio, andt,, is the duration of the preparation pulse P1. ABore appropriate terrmterferogramis used throughout this
evident from Eq. [3],D and A? are fully interdependent. article. Interferogram intensitie(t), of homogeneously filled
Consequently, in a fit of experimental data to the mathematicefDs are mathematically described Hy (
description of Eq. [3] refining the diffusion coefficieBt, an

7
9
2
9

S—r

error in A translates directly into an error squaredDn Fmax yAt
Since the accuracy of the torus factor determines the accu- I(t) = 2mhl, sin( - ) dr, [4]
racy to which an image is reconstructed from toroid-cavity RFI min

data and because torus-factor error margins govern the preci-
sion to which a diffusion coefficient is extracted fromwhereh is the sample height,, andr . are the inner and
MAGROFI experiments, a fast algorithm during which theuter radial sample confines, respectively (Fig. 1), tisdthe
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duration of the RFI pulse. The scaled intendityis indepen i o ; ; _

dent of the radius and proportional to the spin concentration J Sm(zzvlt) dv, = SIN2mv1nal) _ SIN2TV1 i)

and several NMR-console hardware parameters (e.g., the red V1 V1,max V1,min

ceiver gain). Because of the principle of reciprocit@), |, is

also proportional to the torus factdx, obtained with unit ot J v cog 27 vst) 4

current, vy T

o AL (9]

I(t) « 27hcA, sin( - r) dr. [5]

The integral cosine of Eq. [9] is solved by series expansio
according to

It follows that relative interferogram intensities can be simu-

'min

lated by solving the integral function of radii in Eq. [5]. v cog 27 v,t) V1
Because of the nutation frequeney = 27v, = —vyBy, EQ. — dv, = —In< V’ . )
[1] leads to S ! 1,min
*© 2m
r= YA ﬂ_ YA [6] _E ((_1)m(27TAV1t)|)’
© 2av, dyy 2m? = 2m(2m)!
[10]

and transforms Eq. [5] into

whereAv; = vy nac— Vimin @ndMis the index of the individual

vltmad Sin(27p4t) terms @,,) of the alternating sum. The absolute valuesagf
I(t) < yhcAA ”: dv,. [71  converge toward zero after the particular index= |7Aw.t|
va(Tmin) is passed. Before this, however, can reach very high abso

_ N _ lute values, and computer calculations of the sum in Eq. [1C
The proportionalities of Eq. [7] are combined to form thgsually fail because of severe round-off errors. For example

amplitudeb, typical experimental parameters dre= 8 us andAv, = 20
kHz. In *H RFI (y = 26.7510x 10’ T~* s, these particular
vmin Sin(2 7 v4t) values and a typical torus factor & = 1 mT mm lead to
I(t) =b J —————d, [8] as < —10% anda, > 10*. The entire sumY a,,), however,
. V1 is only around 1@ Therefore, even though computer programs

exist that make it possible to conduct calculations with any

where Eq. [6] was used to calculate the integration boundarig&determined accuracy, a numerical analysis of the integral
V(P min) = Vamax AN v1(Fnw) = Vo From Eq. [8], pulse- EQ. [8] is preferred over series expansion.

width-dependent signal intensities are predicted and specific , . , .
pulse widths such as the maximum-intensity or maximuri-eSt Algorithm for Numerical Integration of sin(ax)/xdx

inversion pulse width are calculated. Knowing these particular Nowadays, numerical integration of arbitrary functions are
pulse widths is often necessary to optimize TCD experimerggnventionally conducted using computer software package
(1, 1. Alternatively, an unknown torus factor is calculategike Mathematica or MapléTo determine the specific integral
from experimental RFI intensities, if the dependent variablesof Eq. [8], however, a new and very fast algorithm that reduce
andb are refined, e.g., by a least-squares optimization. Whi¢g@mputer calculation time by orders of magnitude compare
Eq. [8] contain explicitly, A enters into the equation throughwith standard numerical integration routines is presented. Ac
the calculation of the integration boundaries.. and v, ditionally, for a least-squares fit, the computation of the inte
(Eq. [6]). Whether an unknown torus factor is calculated or gral must be repeated many times, and the time saved by tl
known torus factor is used to predict interferogram intensitiegew algorithm becomes significant.

the integral of Eq. [8] must explicitly be solved. Unfortunately, The integral of Eq. [8] consists of the sine function
no analytic solution is known and only series expansion fin(2sv,t)] modified by, ? (Fig. 2). Because of this periodic
numerical solutions apply. function, the integral fromv, ;.. to v, i, is divided into several

parts:
Solving S sin(ax)/Xdx with Series Expansion

According tOl standard integration rules, the integral of Eq.: mathematica is a registered trademark of Wolfram Research, Inc., an
[8] transforms into Maple is a registered trademark of Waterloo Maple Software.
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netogyric ratio the sine function of the integral in Eq. [8] may
only contain one root or no root that qualifies as the start of -
new sine wave period. In the first case, itas= z, and the
center term on the right side of Eq. [11] is equal to 0. In the
second case, a partition as suggested in Eq. [11] is not possib
In both cases, the integral of Eq. [8] is calculated to a sufficien
Z accuracy with standard routines of numerical integration (e.g
S SEES W according to Simpson’s rule). In all other cases, only the sid
Ny \ parts (diagonally hatched in Fig. 2) are calculated with stan
‘ dard integration routines, while the center part is partitionec
further according to

v, = V2 dv,, [14]

vigz k=2 Vik

f sin(2v727vlt) g ag f vt Sin(27vyt)
tvl,min‘ }Vl,a’ ‘Vl,z| |V1,max‘ !

FIG. 2. Partition of the functionality of Eq. [8] into two side parts — .
(diagonally hatched) and a center part (vertically hatched) for fast numerigg"]ere (Slmllar toa and Z) kis a _natural number, and the
integration. relationships|v,] = k/t holds. With dv./dk = —1/t, the
individual terms of the sum in Eq. [14] lead to

Vimin Q) Viz i VLk+1 Sl 27TV t k+1 Sln 27Tk
f sin@mt) o, f sin2mb) o, f sizmnt) o Y du =t J 7(k2 "ak=ts. [15)
V1 Vi ik 1 K
N e sin(2m;t) o + reme sin(27rvst) dv. [11] According to Eq. [15], the terms of the sum in Eq. [14] simply
V3 ! vi v consist of the pulse width times an integralS,, that only

Viz Vlia

depends on the index This integral §,) is calculated by an

Note that because of the convention used in Eq. [6], nutati?ﬁg) rozpc;|4a8te(ingrr;erliagnlt%%rgggg rgutl_neoagg Igt;ullgtgdi ﬁfr
L1 T . 2 T . >3 T

frequencies are negative. The boundayy separating the first %0075449, . Sy = 3.76320x 10" ). With increasing

from the second term on the right side of Eq. [11] is chosen 1Qdex, S, approaches zero, and terms wih> 2048 are so

b‘? the first root (.Jf the function [sing2v,t)] smallgr than small that they can be neglected in a calculation of the integr:
[sin(2mv, mot)], Which is also the start of a new sine wave .
of Eq. [11] according to

period. Accordingly,

[Vimat] = 2> vy mat] — 1 [12] e sin(2arvat) L)
' ' 2 dVl - 2 dvl
Vi Vi
and sin(2rv,,t) = sin(—2wz) = 0. It follows that|v,,| = e e
z/t, wherez is a natural number. Similarly, the frequeney, v Sin(27w,t) a-1
separating the second from the third term on the right side of J 721 dv, +1t > S [16]
Eq. [11] is chosen to be the last root of the function " V1 k=z

[sin(27v,t)] larger than [sin(Zv, mt)], which is also the start
of a new sine wave period. In analogy with the discussigiecause the center term of Eq. [11] (vertically hatched area i

above, it is found that Fig. 2) typically covers most of the nutation frequencies inside
the TCD (except whehis very small), a computer calculation

wimid] + 1= a> vy i [13] that follows the integral partition of Eq. [16] using tabulated

values forS, is many times faster than using conventional

and |v,,] = alt, wherea is a natural number. Figure 2integration routines for the entire integral. If, for example,

exemplifies the partition of the integral into the three distin&Simpson’s rule is employed as an integration routine, at lea:
tive parts (Eq. [11]). The two side parts'{..| = |v.| = |v.,] 12 equally spaced data points per sine wave are needed to ke
and |v,, = |vi = |vimd, respectively) are diagonally numerical calculation errors reasonably small (below 1%). I
hatched, while the center patv(,| = |v,| = |v.|) is hatched addition to the determination of these 12 data points, the
vertically. Depending on pulse width, torus factor, and madunction values must each be calculated according to the int
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gral argument of Eq. [8]. This argument involves a sine funevhereq; is the experimental standard deviation of data point
tion, a division, and a square calculation. Furthermore, eashwell-known iterative procedure to minimizg® is the Lev
value is multiplied by a coefficient and all values must benberg—Marquardt algorithnil®). This algorithm, however,
added. Since, in computer calculations, a sine function itselfrsquires partial derivatives that are unknown for the function
calculated from the sum of many terms of a series expansiatity of Eq. [8] and that would need to be approximated during
the calculation of the integral of a single sine wave peridathe iterative procedure. Consequently, the one-dimension
easily consists of 500 individual calculation steps. Using Egpproach developed by Brenid) calculating a minimum
[16], however, this calculation is substituted simply by theithout derivatives is preferred in torus-factor determinations
access to a stored value. Accordingly, the new procedure isBaent’s algorithm is found as computer-code subroutine in th
least 500 times faster for each sine wave period that mustllierature (4b) and finds a minimum confidently, if the mini-

calculated. mum is unambiguously bracketed between two known value:
Experience shows that thg® parameter (Eqg. [20]) runs
DETERMINING THE TORUS FACTOR through a single minimum when the torus factor is successivel

increased in interferogram simulations, starting with= 0

With the magnetogyric ratioy] of the nucleus under inves-(15). Brent's algorithm speeds up the determination of this
tigation, the geometric parameters of the TCD sample volum@nimum but requires three consecutive starting paramete
(rmn @and r..), and the experimental parametdrand At, (A, A, andA.), where the best-fit parametef(,) is brack
wherei is the number of increments of pulse width (i.e.,t = eted betweed, andA.. In addition, the function valug?®( A,)
iAt), Eq. [8] is used to refine an unknown torus factor bynust be smaller than the function valuesy6€A,) andx?(A.)
nonlinear regression. For each refined guesa,ahe bound- (14b). These requirements are most confidently fulfilled if the
aries v, ma and v, i, are determined with Eq. [6], and relativefollowing starting values are selected
intensitied ; i, are calculated from the integral of Eq. [16]. The

indexi indicates the number of pulse width incremefitshat A, = 0.5A,,

have been used to obtain the experimental intersity After

the calculation of the relative intensities;,, the scaling factor T(2r min + T may)
b is optimized to match the experimental ddta,, Arbitrary Ay =  Bytga

scaling leads to
A, = 1.5A,, [21]

| = bl gm + €k 17
wep T ke T [17] wheret,,, is the experimentally determined maximum-inten

ty pulse width 1). The starting valué\, in Eq. [21] is likely

ggﬁj; teé‘ d'?ﬂ:gﬁsge\g?gg?a bi?:tegn ti?ﬁggg:ﬂ;al ﬁgsvj\f:rle% be already very close to the optimized torus faggy and
Y P P 9 ' easily calculated from geometric and experimental TCD pa

) : o R
Ec?:%?:;x:g/’ when the sum of all deviations squared is m'mm?fmeters. Its equation is derived from a radiofrequency fiels

(B?%) for which the 90° pulse width coincides with the TCD’s
maximume-intensity pulse widtht (.. Accordingly,

d>p €t d23p €t
“db o, T doz > 0. [18] .

‘YBgltmax = 5 . [22]
From substitution of Eq. [17] into Eqg. [18], optimum scaling is

given by In addition, B, is assumed to occur at a radial distande,),

one-third betweem,,, andr ..
b= Eﬂzl (Ik,expl k,sim)

n | 2
k=1 ' k,sim

[19]
I min +r max

2
r(Ap) = 3 [23]

To refine the torus factoA in a nonlinear regression, the
minimum of th_e so-.called(2 parameter yvith re;pgct to th_eWith B, = A,/r(A,), Egs. [22] and [23] lead to the starting
dependent variablé is used as the maximum-likelihood cri-y5)e of A, in Eq. [21].
terion Figure 3 exhibits the result of refininy andb according to
Brent's approach and Eq. [19], respectively. The upper plo
o2 compares experimentally derived interferogram intensities (cil
('Exp's'm) , [20] cles) with data calculated from the best-fit parameters (soli
line). The experimental intensities were obtained WHINMR
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o experimental data Uexp)

— best-fit simulated curve (b/

sim, opt)

"H Signal Intensity

,exp -b /sim, opt
o

0.0 0.5 1.0 1.5 2.0 25 3.0
Pulse Width, ms

FIG. 3. Plot of experimental interferogram intensities (200 MM, NMR) as a function of pulse width (open circles, upper plot) obtained from a TCL
(Fmin = 0.7 mm,r .., = 8.5 mm) completely filled with a solution of 10% chloroform in acetalieThe data are compared to the best fit of Eq. [8] (solid line,
upper plot) after refining the torus factor and optimally scaling the intensities. The residual intensities between experimental and simalateshdata as

a solid line in the lower plot.

(200 MHz, 50-W observe transmitter) from a TCD filled with(confidence interval) around the best-fit parameter, in whic
a solution of 10% chloroform in acetorg-(r.,, = 0.7 mm the true parameter is found to a certain confidence (e.g., 99
andr .. = 8.5 mm). In particular, integrated intensities of theonfidence). In standard computer routines, these intervals &
'H chloroform signals derived from 512 spectra with increcalculated from gradient and curvature matrix elements (i.e
mentally increasing pulse width (pulse width increment dfom partial derivatives). In torus-factor optimizations, how-
dt = 10 us) are plotted as a function of pulse widtf).(The ever, Brent's algorithm without derivatives is preferred anc
best-fit torus factor A, = 0.6138 mT mm) that leads to theconfidence intervals are also determined without derivatives
simulated curve in Fig. 3 indicates nutation frequencies be-For confidence-interval calculations, it is essential to eithe
tweenv,,, = 37.3 kHz atr ,;, and v, = 3.1 kHz atr,., (Eq. know the experimental standard deviations of interferograr
[6]). The lower plot of Fig. 3 shows the residuals betweeintensities ¢; in Eq. [20]) or to estimate them from the quality
experimental and simulated data, which are not purely statistitthe best-fit simulation1(4c). For the latter, standard devia-
(i.e., not only consist of noise) but contain oscillations thdtons are initially set to unity¢;, = o, = 1) and recalculated
coincide with the oscillations of the interferogram. These osfter the minimumy?® is found according to

cillations arise from experimental intensities decaying faster

than calculated by interference of nutation frequencies only S0 (1 e — Bl gimoo) 2

(simulated curve). This additional decay originates from relax- o2= 120 e I LRt [24]
ation or diffusion during the pulses of the RFI experiment. n-=

While both effects have been neglected in the derivation of Eq.

[8] they must be considered in a Comp|ete ana|ysis of Rmherel,s,mom are the optimized simulated relative intensities

experiments. However, including relaxation as a dependéxtd! is the number of dependent parameters varied to obta
parameter in the calculation, for example, led to the sarfee minimumyx® (Eq [20]). Because only the torus factor is
best-fit torus factor and did not improve the confidence g@ried to minimizex?, the number of dependent variables in

which the torus factor is determined. Eq. [24] is| = 1. For comparison, the scaling factbris
separately optimized using Eq. [19] and, thus, not dependent
99% CONFIDENCE OF TORUS-FACTOR the determination of the minimuryg?. With the standard devi
DETERMINATION ation o, of Eq. [24], the minimumy? is recalculated (Eq. [20])

to give the meaningful, absolute valy@,,. With xZ.., the 99%
The confidence to which a dependent parameter is obtairmuhfidence interval fof = 1 is defined {4¢ as the region
from refinement procedures is usually indicated by a regionAA aroundA,, for which
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X% = xhin+ 6.63. [25] according to Eq. [24] and the minimuyf calibrated to give
X&in- At last, the 99% confidence interval is determined using

A ing that thi L i it the numerical secant method described above.

s;pmlntgt dat IS regloln IS syfrr;rr?etrlc arqu?qpt% ! tls To follow the optimization progress during the calculations,
;s_u I(t:)Ietn 0 ;aherzmlne on ydotr;]e (t)h eh V;/g pon sbo Em erzs'Se%xperimental and simulated data are visualized on the monits
ion between the curve and the threshold given by £G. [ ]a a plot of intensities versus pulse width similar to that ir
The point of intersection is calculated by the secant meth 3. The simulation is updated every time a better fit is
that _numgncally determines the r_oot of a smoothly curv und. In addition, residuals between experiment and simule
functionality. The secant method is found as computer-co

N . . 6n are shown and updated in a separate plot.
subroutine in the I|terature1(1§) gnd is preferred over other The program code uses the routines “BRENTZ#) and
methods (e.g.regula fals) for it finds a root even if it is not .

. RTSEC” (144 from the literature. The iterative calculation is
unambiguously bracketed between two known values. To 06) (149

tain the threshold of Eq. [25] as root, aff values used for the sually finished after a few seconds, even though three diffe

t calculat diminished byZ( + 6.63). T tart ent numerical routines are executed many times. The origin
secant caiculation are diminished by mk -63). Two ST source code was written in Pascal and compiled into a exect
ing values are required, one of which should be positive al

. . . ! . le computer program using Turbo Pascal®5The program
the other negative. The negative starting value is easily o P prog 9 prog

) > . ses two additional data files. The first contains magnetogyri
tgmed from.X’“i” that is always below the threshold of Eq. [25 atios of all known NMR-active isotopes§), while the second
(i.e., negative with respect to the threshold). Tifevalue of

R contains precalculated values k=0,1,2,...,2048
A = 1.01 A, is, in most cases, already above the threshol P 8 ( )

Accordingly. for example, the secant method leads to a 99 ed in the calculation of the integral of Eq. [16]. Upon leaving
. ; ' the , the best-fit simulated dat d th idual
confidence interval oAA = £0.0017 mT mm for thexper- © program, e bes-it simated gata and the resicuals a

) S . . saved in a separate data file for further use or analysis.
iment in Fig. 3 (i.e.,AA = *0.3% with respect t0A,, = P y

0.6138 mT mm). For many TCD experiments, the 99% confi-
dence to which the torus factor is determined is belotso.

Again, this shows that the simple description of Befield in The author thanks E. Lehnhof, University of Bonn, for providing many sets
TCDs (Eq. [1]) is very accurate and RFI/RFM in TCDs if experimental RFI datalf), P. Trautner, University of Bonn, for carefully
conducted to a high precision. reviewing the computer program source code, R. E. Gerald Il, Argonn
National Laboratory, for testing the program, and R. J. Klingler, Argonne
National Laboratory, for the suggestion to add the plot of residuals to th
COMPUTER PROGRAM FOR TORUS-FACTOR display of experimental and simulated data.
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