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Toroid detectors are resonators for high-pressure in situ NMR
spectroscopy or one-dimensional rotating-frame imaging. One of
their unique qualities is a mathematically well-defined nonuniform
radiofrequency field confined to the inside of the detector. A single
parameter (i.e., the torus factor) is sufficient to describe the rela-
tionship between this radiofrequency field and the radial distance
from the center axis of the torus. Because accurate determination
of the torus factor is essential to optimize toroid cavity NMR
experiments or conduct toroid cavity imaging, a fast numerical
algorithm for accurate, precise, and convenient determination of
torus factors from pulse width-dependent signal intensities is in-
troduced. In addition, the new algorithm provides for 99% confi-
dence intervals around the refined torus factors. A computer
program in which the optimization progress is visualized during
the torus factor refinement is presented. Upon completion of the
program, the best-fit simulated data and the residuals between best
fit and experimental data are provided. © 2000 Academic Press

Key Words: torus factor; toroid cavity detector; rotating-frame
imaging; radiofrequency field gradient; Brent algorithm.

INTRODUCTION

Toroid cavity probes are uniquely designed NMR pro
that facilitate coaxial resonators, i.e., cylindrical TCDs (toroid
cavity detectors, Fig. 1) as NMR detectors rather than con
tional coil setups (e.g., solenoid or Helmholtz saddle co
The radiofrequency field (B1 field) of a TCD is confined to th
inside of the detector (1); therefore, it can be mounted close
electrically conducting materials without a significant los
inductance. Consequently, TCDs are predestined for the u
metal pressure vessels and have been utilized extensiv
autoclave probes for high-pressure and high-temperaturein situ
NMR studies (2).

An additional, distinctive quality of TCDs is their nonu
form and mathematically well-defined radiofrequency fi
gradient. TheB1 field is strongest near the central condu
(Fig. 1) and drops off as the radial distancer increases (1)

B1~r ! 5
A

r
, [1]
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whereA is the torus factor, i.e., the proportionality betweenB1

andr 21. The torus factor depends primarily on the power le
of the transmitter amplifier and the quality,Q, of the probe
circuitry. From Eq. [1], it is seen that aB1 field gradient of

G1~r ! 5
dB1~r !

dr
5 2

A

r 2 [2]

occurs in TCDs. In the vicinity of the central conductor,G1 is
very strong. Here, standard high-resolution NMR equipm
(e.g., 100-W H-band power amplifier) is usually sufficien
generate gradients of more than 5 mT mm21 (500 G cm21).
Accordingly,G1 is well suited for one-dimensional, radial R
(rotating-frame imaging) (3) or RFM (rotating-framemicros-
copy) (4). Close to the central conductor, toroid-cavity R
can resolve structures on the micrometer scale in material
range from mobile fluids to rigid polymers. Since differen
in nutation frequencies (rather than differences in Lar
frequencies) are exploited to discriminate between dista
chemical-shift information is automatically retained in R
experiments.

Because of the nonuniform and radially dependentB1 gra-
dient in TCDs, accurate one-dimensional imaging is condu
only if the torus factor is known accurately and precis
Ill-determined torus factors (i.e., determined larger or sm
than the true torus factor) lead to images in which struc
appear larger or smaller than they really are. In addition
imaged structures appear shifted on the distance axis.

In toroid-cavity MAGROFI (magnetization-gratingrotating-
frameimaging), a recently developedB1 gradient NMR tech
nique to measure molecular diffusion (5, 6), the accuracy of th
orus factor limits the accuracy to which a diffusion coeffic
s determined. In this new technique, a single preparation
P1) generates a nonuniform, radially dependentz-magnetiza
ion grating. During a subsequent evolution timet, the grating
mplitudeMA(r ) decays exponentially depending on the

verse of the radius to a power of 4 (5)
1090-7807/00 $35.00
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MA~r ! 5 expS2
Dg 2A2t P1

2 t

r 4 D , [3]

where D is the diffusion coefficient,g is the magnetogyr
ratio, andtP1 is the duration of the preparation pulse P1.
evident from Eq. [3],D and A2 are fully interdependen

onsequently, in a fit of experimental data to the mathema
escription of Eq. [3] refining the diffusion coefficientD, an

error in A translates directly into an error squared inD.
Since the accuracy of the torus factor determines the

racy to which an image is reconstructed from toroid-cavity
data and because torus-factor error margins govern the
sion to which a diffusion coefficient is extracted fr
MAGROFI experiments, a fast algorithm during which

FIG. 1. Schematic drawing of a toroid cavity detector (TCD) and
enclosed sample volume. The sample volume is characterized by the inn
outer radial confines (r min andr max, respectively) and by the sample height (h).
s

al

u-
I
ci-

torus factor is calculated to a maximum accuracy has
developed. In addition to the calculation of the most lik
torus factor, the new algorithm returns the 99% confide
interval of determination.

Any sample that is placed inside the TCD decreases itsQ to
some extent and also influences the value ofA. Thus, a pre
viously determined torus factor may no longer be valid if
TCD is loaded with a different sample. Consequently,
proportionality between radial distance andB1 field in TCDs
should always be determined directly from the sample u
investigation. The numerical procedure introduced here s
as a fast and convenient way to conduct this determin
prior to each individual TCD experiment. However, the p
cedure is valid only for reasonably homogeneous samples
may not be accurate once a more complicated, nonhom
neous sample is loaded, e.g., for imaging studies. In this
the scaling of the radial distance axis must be conducted
known structural details of the image, such as the desce
the intensity to zero at the inner or outer sample radius o
TCD.

THEORY

The torus factor,A, is a dependent variable in the mat
matical description of the RFI experiment. Accordingly, i
determined from the best fit of the mathematical descriptio
experimental RFI data. Experimental RFI data (i.e., pu
width-dependent signal intensities) are obtained either
conventional RFI experiments (3) or from the time-savin
RIPT method (rapid imaging pulse train) (7–9). After the
experiment, the signal intensities are typically processed
real Fourier transformation revealing magnetization as a
tion of nutation frequency,n1. The nutation-frequency axis
scaled byG1 to present data on a distance axis (1, 4). If the B1

gradient coil or resonator is also used as the receiving
Fourier-transformed intensities must be scaled appropriat
exhibit spin-concentration data as a function of distance
example, they must be divided byr 2 in the case of TCD
experiments (1).

Pulse-width-dependent signal intensities have been te
pseudo-FID(8) or driven FID (9). In RFI experiments, how
ever, the attenuation of signal intensities with increasing p
width originates almost exclusively from the interference
magnetizations of different nutation frequencies (3, 9), and the
more appropriate terminterferogramis used throughout th
article. Interferogram intensities,I (t), of homogeneously fille
TCDs are mathematically described by (1)

I ~t! 5 2phI0 E
rmin

r max

sinS2
gAt

r Ddr, [4]

whereh is the sample height,r min and r max are the inner an
outer radial sample confines, respectively (Fig. 1), andt is the

and



ion
e

t

mu
5].

the

ari
-
eci
um
ul
en
ted
es
hi

gh
t

or
itie
ly

n o

Eq

sion

w l
f

o
[10]
ple,

r

,
ms
any
ral in

are
c ages
l ral

uces
ared
. Ad-
nte-
y the

ion
ic
l

., and
M

159TORUS FACTOR
duration of the RFI pulse. The scaled intensityI 0 is indepen-
dent of the radius and proportional to the spin concentratc
and several NMR-console hardware parameters (e.g., th
ceiver gain). Because of the principle of reciprocity (10), I 0 is
also proportional to the torus factorA0 obtained with uni
current,

I ~t! } 2phcA0 E
rmin

r max

sinS2
gAt

r Ddr. [5]

It follows that relative interferogram intensities can be si
lated by solving the integral function of radii in Eq. [
Because of the nutation frequencyv 1 5 2pn 1 5 2gB1, Eq.
[1] leads to

r 5 2
gA

2pn1
,

dr

dn1
5

gA

2pn 1
2 , [6]

and transforms Eq. [5] into

I ~t! } ghcAA0 E
n1~r min!

n1~r max! sin~2pn1t!

n 1
2 dn1. [7]

The proportionalities of Eq. [7] are combined to form
amplitudeb,

I ~t! 5 b E
nmax

nmin sin~2pn1t!

n 1
2 dn1, [8]

where Eq. [6] was used to calculate the integration bound
n 1(r min) 5 n1,max and n 1(r max) 5 n1,min. From Eq. [8], pulse
width-dependent signal intensities are predicted and sp
pulse widths such as the maximum-intensity or maxim
inversion pulse width are calculated. Knowing these partic
pulse widths is often necessary to optimize TCD experim
(1, 11). Alternatively, an unknown torus factor is calcula
from experimental RFI intensities, if the dependent variablA
andb are refined, e.g., by a least-squares optimization. W
Eq. [8] containsb explicitly, A enters into the equation throu
he calculation of the integration boundaries,n1,max and n1,min

(Eq. [6]). Whether an unknown torus factor is calculated
known torus factor is used to predict interferogram intens
the integral of Eq. [8] must explicitly be solved. Unfortunate
no analytic solution is known and only series expansio
numerical solutions apply.

Solving* sin(ax)/x2dx with Series Expansion

According to standard integration rules, the integral of
[8] transforms into
re-

-

es

fic
-

ar
ts

le

a
s,
,
r

.

E
n1,max

n1,min sin~2pn1t!

n 1
2 dn1 5

sin~2pn1,maxt!

n1,max
2

sin~2pn1,mint!

n1,min

1 2pt E
n1,max

n1,min cos~2pn1t!

n1
dn1.

[9]

The integral cosine of Eq. [9] is solved by series expan
according to

E
n1,max

n1,min cos~2pn1t!

n1
dn1 5 2lnSn1,max

n1,min
D

2 O
m51

` S ~21! m
~2pDn1t!

2m

2m~2m!! D ,

[10]

hereDn1 5 n1,max 2 n1,min, andm is the index of the individua
terms (am) of the alternating sum. The absolute values oam

converge toward zero after the particular indexmp $ upDn 1tu
is passed. Before this, however,am can reach very high abs-
lute values, and computer calculations of the sum in Eq.
usually fail because of severe round-off errors. For exam
typical experimental parameters aret 5 8 ms andDn1 5 20
kHz. In 1H RFI (g 5 26.75103 107 T21 s21), these particula
values and a typical torus factor ofA 5 1 mT mm lead to
a5 , 21035 anda6 . 1040. The entire sum (¥ am), however
is only around 102. Therefore, even though computer progra
exist that make it possible to conduct calculations with
predetermined accuracy, a numerical analysis of the integ
Eq. [8] is preferred over series expansion.

Fast Algorithm for Numerical Integration of* sin(ax)/x2dx

Nowadays, numerical integration of arbitrary functions
onventionally conducted using computer software pack
ike Mathematica or Maple.1 To determine the specific integ
of Eq. [8], however, a new and very fast algorithm that red
computer calculation time by orders of magnitude comp
with standard numerical integration routines is presented
ditionally, for a least-squares fit, the computation of the i
gral must be repeated many times, and the time saved b
new algorithm becomes significant.

The integral of Eq. [8] consists of the sine funct
[sin(2pn 1t)] modified byn1

22 (Fig. 2).Because of this period
function, the integral fromn1,max to n1,min is divided into severa
parts:

1 Mathematica is a registered trademark of Wolfram Research, Inc
aple is a registered trademark of Waterloo Maple Software.
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E
n1,max

n1,min sin~2pn1t!

n 1
2 dn1 5 E

n1,max

n1,z sin~2pn1t!

n 1
2 dn1

1 E
n1,z

n1,a sin~2pn1t!

n 1
2 dn1 1 E

n1,a

n1,min sin~2pn1t!

n 1
2 dn1. [11]

ote that because of the convention used in Eq. [6], nut
requencies are negative. The boundaryn 1,z separating the fir
from the second term on the right side of Eq. [11] is chose
be the first root of the function [sin(2pn 1t)] smaller than
[sin(2pn1,maxt)], which is also the start of a new sine wa
period. Accordingly,

un1,maxtu $ z . un1,maxtu 2 1 [12]

and sin(2pn 1,zt) 5 sin(22pz) 5 0. It follows that un 1,zu 5
/t, wherez is a natural number. Similarly, the frequencyn 1,a

separating the second from the third term on the right sid
Eq. [11] is chosen to be the last root of the func
[sin(2pn 1t)] larger than [sin(2pn1,mint)], which is also the sta
of a new sine wave period. In analogy with the discus
above, it is found that

un1,mintu 1 1 $ a . un1,minu [13]

and un 1,au 5 a/t, where a is a natural number. Figure
exemplifies the partition of the integral into the three dist
tive parts (Eq. [11]). The two side parts (un1,maxu $ un 1u $ un 1,zu

nd un 1,au $ un 1u $ un 1,minu, respectively) are diagona
hatched, while the center part (un 1,zu $ un 1u $ un au) is hatched
vertically. Depending on pulse width, torus factor, and m

FIG. 2. Partition of the functionality of Eq. [8] into two side pa
(diagonally hatched) and a center part (vertically hatched) for fast num
integration.
n

to

of

n

-

-

netogyric ratio the sine function of the integral in Eq. [8] m
only contain one root or no root that qualifies as the start
new sine wave period. In the first case, it isa 5 z, and the
center term on the right side of Eq. [11] is equal to 0. In
second case, a partition as suggested in Eq. [11] is not pos
In both cases, the integral of Eq. [8] is calculated to a suffic
accuracy with standard routines of numerical integration (
according to Simpson’s rule). In all other cases, only the
parts (diagonally hatched in Fig. 2) are calculated with s
dard integration routines, while the center part is partitio
further according to

E
n1,z

n1,a sin~2pn1t!

n 1
2 dn1 5 O

k5z

a21 E
n1,k

n1,k11 sin~2pn1t!

n 1
2 dn1, [14]

where (similar toa and z) k is a natural number, and t
relationshipsun 1,ku 5 k/t holds. With dn 1/dk 5 21/t, the
individual terms of the sum in Eq. [14] lead to

E
n1,k

n1,k11 sin~2pn1t!

n 1
2 dn1 5 t E

k

k11 sin~2pk!

k2 dk 5 tSk. [15]

According to Eq. [15], the terms of the sum in Eq. [14] sim
consist of the pulse widtht times an integral,Sk, that only
depends on the indexk. This integral (Sk) is calculated by a
appropriate numerical integration routine and tabulated fork 5
1 to 2048 (i.e.,S1 5 0.1033208,S2 5 0.0210316,S3 5
0.0075449, . . . ,S2048 5 3.763203 10211). With increasing
index, Sk approaches zero, and terms withk . 2048 are s
small that they can be neglected in a calculation of the int
of Eq. [11] according to

E
n1,max

n1,min sin~2pn1t!

n 1
2 dn1 5 E

n1,max

n1,z sin~2pn1t!

n 1
2 dn1

1 E
n1,a

n1,min sin~2pn1t!

n 1
2 dn1 1 t O

k5z

a21

Sk. [16]

Because the center term of Eq. [11] (vertically hatched ar
Fig. 2) typically covers most of the nutation frequencies in
the TCD (except whent is very small), a computer calculati
hat follows the integral partition of Eq. [16] using tabula
alues forSk is many times faster than using conventio

integration routines for the entire integral. If, for exam
Simpson’s rule is employed as an integration routine, at
12 equally spaced data points per sine wave are needed t
numerical calculation errors reasonably small (below 1%
addition to the determination of these 12 data points,
function values must each be calculated according to the

al
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161TORUS FACTOR
gral argument of Eq. [8]. This argument involves a sine fu
tion, a division, and a square calculation. Furthermore,
value is multiplied by a coefficient and all values must
added. Since, in computer calculations, a sine function its
calculated from the sum of many terms of a series expan
the calculation of the integral of a single sine wave pe
easily consists of 500 individual calculation steps. Using
[16], however, this calculation is substituted simply by
access to a stored value. Accordingly, the new procedure
least 500 times faster for each sine wave period that mu
calculated.

DETERMINING THE TORUS FACTOR

With the magnetogyric ratio (g) of the nucleus under inve
tigation, the geometric parameters of the TCD sample vo
(r min and r max), and the experimental parametersi and Dt,
wherei is the number of increments of pulse widthDt (i.e., t 5
iDt), Eq. [8] is used to refine an unknown torus factor
nonlinear regression. For each refined guess ofA, the bound
ariesn1,max andn1,min are determined with Eq. [6], and relat
intensitiesI i ,sim are calculated from the integral of Eq. [16]. T
index i indicates the number of pulse width incrementsDt that
have been used to obtain the experimental intensityI i ,exp. After
the calculation of the relative intensitiesI i ,sim, the scaling facto
b is optimized to match the experimental data,I i ,exp. Arbitrary
scaling leads to

I k,exp5 bIk,sim 1 ek, [17]

here e k is the deviation between experimental and sca
simulated intensity of data pointk. Optimum scaling, howeve
is achieved, when the sum of all deviations squared is min
Accordingly,

d ¥ k51
n e k

2

db
5 0,

d2 ¥ k51
n e k

2

db2 . 0. [18]

From substitution of Eq. [17] into Eq. [18], optimum scaling
given by

b 5
¥ k51

n ~I k,expI k,sim!

¥ k51
n I k,sim

2 . [19]

To refine the torus factorA in a nonlinear regression, t
minimum of the so-calledx2 parameter with respect to t
dependent variableA is used as the maximum-likelihood c
terion

x 2 5 O
i50

n21 S I i ,exp2 bIi ,sim

s i
D 2

, [20]
-
ch
e
is
n,
d
.

at
be

e

d,

l.

wheres i is the experimental standard deviation of data poii .
A well-known iterative procedure to minimizex2 is the Lev-

nberg–Marquardt algorithm (12). This algorithm, howeve
equires partial derivatives that are unknown for the func
lity of Eq. [8] and that would need to be approximated du

he iterative procedure. Consequently, the one-dimens
pproach developed by Brent (13) calculating a minimum
ithout derivatives is preferred in torus-factor determinati
rent’s algorithm is found as computer-code subroutine in

iterature (14b) and finds a minimum confidently, if the min
um is unambiguously bracketed between two known va
Experience shows that thex2 parameter (Eq. [20]) run

through a single minimum when the torus factor is success
increased in interferogram simulations, starting withA ' 0
15). Brent’s algorithm speeds up the determination of
inimum but requires three consecutive starting param

Aa, Ab, andAc), where the best-fit parameter (Aopt) is brack-
eted betweenAa andAc. In addition, the function valuex 2( Ab)
must be smaller than the function values ofx 2( Aa) andx 2( Ac)
(14b). These requirements are most confidently fulfilled if
following starting values are selected

Aa 5 0.5Ab,

Ab 5
p~2r min 1 r max!

6gtmax
,

Ac 5 1.5Ab, [21]

where tmax is the experimentally determined maximum-int-
sity pulse width (1). The starting valueAb in Eq. [21] is likely
to be already very close to the optimized torus factorAopt and
easily calculated from geometric and experimental TCD
rameters. Its equation is derived from a radiofrequency
(B91) for which the 90° pulse width coincides with the TCD
maximum-intensity pulse width (tmax). Accordingly,

gB91tmax 5
p

2
. [22]

In addition,B91 is assumed to occur at a radial distance,r ( Ab),
ne-third betweenr min and r max:

r ~ Ab! 5
2r min 1 r max

3
. [23]

With B91 5 Ab/r ( Ab), Eqs. [22] and [23] lead to the starti
value ofAb in Eq. [21].

Figure 3 exhibits the result of refiningA andb according to
Brent’s approach and Eq. [19], respectively. The upper
compares experimentally derived interferogram intensities
cles) with data calculated from the best-fit parameters (
line). The experimental intensities were obtained with1H NMR
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(200 MHz, 50-W observe transmitter) from a TCD filled w
a solution of 10% chloroform in acetone-d6 (r min 5 0.7 mm
andr max 5 8.5 mm). In particular, integrated intensities of
1H chloroform signals derived from 512 spectra with inc-
mentally increasing pulse width (pulse width incremen
dt 5 10 ms) are plotted as a function of pulse width (t). The
best-fit torus factor (Aopt 5 0.6138 mT mm) that leads to t
imulated curve in Fig. 3 indicates nutation frequencies
weennmax 5 37.3 kHz atr min andnmin 5 3.1 kHz atr max (Eq.
[6]). The lower plot of Fig. 3 shows the residuals betw
experimental and simulated data, which are not purely sta
(i.e., not only consist of noise) but contain oscillations
coincide with the oscillations of the interferogram. These
cillations arise from experimental intensities decaying fa
than calculated by interference of nutation frequencies
(simulated curve). This additional decay originates from re
ation or diffusion during the pulses of the RFI experim
While both effects have been neglected in the derivation o
[8], they must be considered in a complete analysis of
experiments. However, including relaxation as a depen
parameter in the calculation, for example, led to the s
best-fit torus factor and did not improve the confidenc
which the torus factor is determined.

99% CONFIDENCE OF TORUS-FACTOR
DETERMINATION

The confidence to which a dependent parameter is obt
from refinement procedures is usually indicated by a re

FIG. 3. Plot of experimental interferogram intensities (200 MHz,1H NM
r min 5 0.7 mm,r max 5 8.5 mm) completely filled with a solution of 10% c

upper plot) after refining the torus factor and optimally scaling the inten
a solid line in the lower plot.
f

e-

n
tic
t
-
r

ly
-

t.
q.
I
nt
e

o

ed
n

(confidence interval) around the best-fit parameter, in w
the true parameter is found to a certain confidence (e.g.,
confidence). In standard computer routines, these interva
calculated from gradient and curvature matrix elements
from partial derivatives). In torus-factor optimizations, ho
ever, Brent’s algorithm without derivatives is preferred
confidence intervals are also determined without derivati

For confidence-interval calculations, it is essential to e
know the experimental standard deviations of interferog
intensities (s i in Eq. [20]) or to estimate them from the qua
of the best-fit simulation (14c). For the latter, standard dev
tions are initially set to unity (s i 5 s 0 5 1) and recalculate
after the minimumx2 is found according to

s 0
2 5

¥ i50
n21 ~I i ,exp2 bIi ,sim,opt!

2

n 2 l
, [24]

whereI i ,sim,opt are the optimized, simulated relative intensit
and l is the number of dependent parameters varied to o
he minimumx2 (Eq. [20]). Because only the torus factor
varied to minimizex2, the number of dependent variables
Eq. [24] is l 5 1. For comparison, the scaling factorb is
eparately optimized using Eq. [19] and, thus, not depend
he determination of the minimumx2. With the standard dev-
ations0 of Eq. [24], the minimumx2 is recalculated (Eq. [20
to give the meaningful, absolute valuexmin

2 . With xmin
2 , the 99%

onfidence interval forl 5 1 is defined (14c) as the regio
DA aroundAopt for which

as a function of pulse width (open circles, upper plot) obtained from a
oform in acetone-d6. The data are compared to the best fit of Eq. [8] (solid

es. The residual intensities between experimental and simulated dataare shown a
R)
hlor
siti
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163TORUS FACTOR
x 2 # x min
2 1 6.63. [25]

ssuming that this region is symmetric aroundAopt, it is
sufficient to determine only one of the two points of inters
tion between thex2 curve and the threshold given by Eq. [2
The point of intersection is calculated by the secant me
that numerically determines the root of a smoothly cu
functionality. The secant method is found as computer-
subroutine in the literature (14a) and is preferred over oth

ethods (e.g.,regula falsi) for it finds a root even if it is no
nambiguously bracketed between two known values. To

ain the threshold of Eq. [25] as root, allx2 values used for th
secant calculation are diminished by (xmin

2 1 6.63). Two start-
ing values are required, one of which should be positive
the other negative. The negative starting value is easily
tained fromxmin

2 that is always below the threshold of Eq. [2
(i.e., negative with respect to the threshold). Thex2 value of
A 5 1.01 Aopt is, in most cases, already above the thresh

ccordingly, for example, the secant method leads to a
onfidence interval ofDA 5 60.0017 mT mm for theexper-

iment in Fig. 3 (i.e.,DA 5 60.3% with respect toAopt 5
0.6138 mT mm). For many TCD experiments, the 99% co
dence to which the torus factor is determined is below61%.
Again, this shows that the simple description of theB1 field in
TCDs (Eq. [1]) is very accurate and RFI/RFM in TCDs
conducted to a high precision.

COMPUTER PROGRAM FOR TORUS-FACTOR
DETERMINATION

Because of the importance of accurate and confident d
mination of torus factors for TCD spectroscopy and imagin
fast computer program was developed and is available fro
author upon request.

The program performs the following procedures and
tines: first, an input routine asks for the inner and outer sa
confines (r min andr max, respectively), the pulse width increm
(Dt), the nucleus under investigation, and the name o
RFI-intensity data file containing an arbitrary number of
perimental intensitiesI i ,exp as a list of values. From the inp
parameters, starting values of the Brent algorithm are c
lated according to Eq. [21], and interferogram intensities (I i ,sim)
are calculated according to the fast numerical integration
tine described above. The experimental pulse widths (t 5 iDt)
are used for the integration routine, so that simulated inten
(I i ,sim) occur at the same points of the time axis as those o
experimental data. WithI i ,exp and I i ,sim, the optimum scalin
factor (b) is calculated according to Eq. [19], and the sum
deviations squared is determined from Eq. [20] with exp
mental standard deviationss i set to unity.

With Brent’s algorithm, the minimumx2 is determine
iteratively to an accuracy in the range of the computer’s ro
off error. Thereafter, the standard deviation is recalcu
-
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d
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b-

d
b-

d.
%

-
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a
he

-
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e
-
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u-
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e

f
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according to Eq. [24] and the minimumx calibrated to giv
xmin

2 . At last, the 99% confidence interval is determined u
the numerical secant method described above.

To follow the optimization progress during the calculatio
experimental and simulated data are visualized on the mo
as a plot of intensities versus pulse width similar to tha
Fig. 3. The simulation is updated every time a better fi
found. In addition, residuals between experiment and sim
tion are shown and updated in a separate plot.

The program code uses the routines “BRENT” (14b) and
“RTSEC” (14a) from the literature. The iterative calculation
usually finished after a few seconds, even though three d
ent numerical routines are executed many times. The ori
source code was written in Pascal and compiled into a ex
able computer program using Turbo Pascal 5.5.2 The program
uses two additional data files. The first contains magneto
ratios of all known NMR-active isotopes (16), while the secon
ontains precalculated values ofSk (k 5 0, 1, 2, . . . , 2048

used in the calculation of the integral of Eq. [16]. Upon leav
the program, the best-fit simulated data and the residua
saved in a separate data file for further use or analysis.
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